

AFRL-IF-RS-TR-2005-189
Final Technical Report
May 2005

TURBINE ENGINE MONITORING SYSTEM
(TEMS) LONG TERM SUPPORT
INFRASTRUCTURE

Giordano Automation Corporation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-189 has been reviewed and is approved for publication

APPROVED: /s/

JAMES M. NAGY
Project Engineer

 FOR THE DIRECTOR: /s/

JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MAY 2005

3. REPORT TYPE AND DATES COVERED
Final Sep 00 – Sep 04

4. TITLE AND SUBTITLE
TURBINE ENGINE MONITORING SYSTEM (TEMS) LONG TERM
SUPPORT INFRASTRUCTURE

6. AUTHOR(S)
Mary Nolan, Gerard Giordano,
Al Esser and Gregory deMare

5. FUNDING NUMBERS
C - F30602-00-C-0229
PE - 606070
PR - TEMS
TA - 01
WU - 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Giordano Automation Corporation
21 White Deer Plaza
Sparta New Jersey 07871

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFED
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-189

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James M. Nagy/IFED/(315) 330-3173/ James.Nagy@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Under this contract, initiatives were conducted to improve the sustainment of the Turbine Engine Monitoring System
(TEMS). TEMS is deployed on the A-10 and KC-135 aircraft to monitor engine parameters and provide alerts to the
ground crew upon the occurrence of Malfunction Transactions (MALTRAN). The TEMS system was designed around
1970’s technology, and has numerous sustainment issues because of aging and diminishing manufacturing source
(DMS) issues.

This program was conducted under a Program Research and Development Authority (PRDA) effort. The efforts
represent a true partnership between the two sides of the Air Force that rarely communicate: the R&D side represented
by AFRL, and the post-deployment sustainment organization, WR-ALC. The partnership focused on introducing new
technologies and innovative solutions to sustainment, and at the same time, provided clear insight to the R&D
community the logistic impacts of early design decisions.

This Final Report details the various initiatives performed as well as the overall results of each initiative. This includes
UDU TPS Development, TEMS CCA TPS Re-Host, TEMS FFSCU Re-Engineering, AGETS Long Term Sustainment
Study, AGETS Relay Study, AGETS System Upgrades, AGETS Software Support, FFSCU Emergency Repair for KC-
135, A-10 Mishap Investigation, Loop Tester Study: Alternative to Hosting of AIS Functions, and EPU Download

15. NUMBER OF PAGES
40

14. SUBJECT TERMS
Test Program Set Development, Model Based Reasoning, Turbine Engine Monitoring
System, TEMS 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

1.0 INTRODUCTION... 1

2.0 DIAGNOSTICIAN TECHNOLOGY.. 2
2.1 DIAGNOSTICIAN IMPLEMENTATION IN A TEST PROGRAM SET - A SOFTWARE ENGINEERING
PERSPECTIVE .. 5
2.2 DIAGNOSTICIAN RUN-TIME OPERATION.. 9

3.0 SUMMARY OF TASKS PERFORMED UNDER CONTRACT AND TASK RESULTS 13
3.1 TEMS SUSTAINMENT ACTIVITIES ... 13

3.1.1 UDU TPS ... 13
3.1.2 TEMS CCA TPS Re-Host.. 13

3.1.2.1 Test Station Environment.. 14
3.1.2.2 APST Control and Support Software .. 14
3.1.2.3 Re-Host the TEMS SRU Test Program Sets ... 15
3.1.2.4 Sequence of Tasks to Re-host the TEMS SRU Test Programs ... 15
3.1.2.5 Certification of TEMS SRU Test Programs .. 17
3.1.2.6 Development of Test Program Instructions for Designated UUT TPSs .. 17
3.1.2.7 CSCI Delivery... 18

3.2 TEMS FUEL FLOW SIGNAL CONDITIONING UNIT (FFSCU) RE-ENGINEERING............................ 21
3.3 TEMS IEPU LRU DEPOT TEST PROGRAM SET (RE-DIRECTED) .. 26
3.4 AGETS.. 26

3.4.1 AGETS Long Term Sustainment Study .. 26
3.4.2 AGETS Relay Study... 27
3.4.3 AGETS System Upgrades .. 27
3.4.4 AGETS Software Support (OnBoard Software Subcontract) .. 27

3.5 UDAS TEST AT LM AERO... 28
3.6 IEPU TPS TASK RE-DIRECTION .. 29

3.6.1 FFSCU Emergency Repair for KC-135 .. 29
3.6.2 Mishap Investigation ... 29
3.6.3 Tear-down & Quote ... 30
3.6.4 Loop Tester Study of Best Alternative to Hosting of AIS Functions 31
3.6.5 EPU Download Problem Investigation ... 31

4.0 APPENDIX A - LIST OF DELIVERABLES ... 33

ii

LIST OF FIGURES

Figure 1: Breaking the Wall between Development and Maintenance..................2
Figure 2: Fault/Symptom Matrix Generated from Design......................................3
Figure 3: Dynamic Diagnostics ...3
Figure 4: Traditional Test Program Structure..5
Figure 5: Model Based Test Program Structure..6
Figure 6: Diagnostician Interaction with Test Program..7
Figure 7: Go/No-Go Control Mode..10
Figure 8: Diagnostician Control Mode...10
Figure 9: Mixed Control Mode...11
Figure 10: Diagnostician Integration into LabVIEW Environment12
Figure 11: EPU 091350 Configuration Slot A6 CSCI Delivery19
Figure 12: EPU 9383755-10 Configuration Slot A8 CSCI Delivery20
Figure 13: Letter of Certification of APEX ...23
Figure 14: FFSCU Design Information provided by APEX..................................25

iii

LIST OF TABLES

Table 1: TEMS UDU SRU Test Program Sets..13
Table 2: TEMS EPU SRU Test Program Sets Re-Hosted on APST...................15
Table 3: Identification of FFSCU Units..24

1

1.0 Introduction

This document is the Final Report under Air Force Research Laboratory (AFRL) contract
number F30602-00-C-0229, performed by Giordano Automation Corp., entitled TEMS
Long Term Support Infrastructure.

Under the contract, initiatives were conducted to improve the sustainment of WR-ALC
managed systems, including the Turbine Engine Monitoring System (TEMS) and the
Automated Ground Engine Test Set (AGETS). TEMS is deployed on the A-10 and KC-
135 aircraft to monitor engine parameters and provide alerts to the ground crew upon the
occurrence of Malfunction Transactions (MALTRAN). The TEMS system was designed
around 1970’s technology, and has numerous sustainment issues because of aging and
diminishing manufacturing source (DMS) issues. AGETS is a test system used to test the
F100-100 engines used on the F-15.

Giordano Automation’s Diagnostician technology was applied to TEMS test program sets
as well as to the AGETS system to improve troubleshooting efficiencies. The
Diagnostician technology and the application of this technology to both TEMS and
AGETS are described in Section 2 of this report.

This program was conducted under a Program Research and Development Authority
(PRDA) effort. The efforts represent a true partnership between the two sides of the Air
Force that rarely communicate: the R&D side represented by AFRL, and the post-
deployment sustainment organization, WR-ALC. The partnership focused on introducing
new technologies and innovative solutions to sustainment, and at the same time, provided
clear insight to the R&D community the logistic impacts of early design decisions.

As a result of the tasks performed under this contract, and the partnership with the depot,
TEMS impact on Mission Capable rates has improved significantly. Where TEMS once
had one of the highest MICAP rates in the Air Force, MICAP rates are now well in
control and are no longer a major issue for TEMS sustainment.

Additionally, most of the short-term recommendations made in the AGETS Trade Study
have been implemented or initiated by the Air Force and the result is improved AGETS
supportability.

The Fuel Flow Signal Conditioning Unit (FFSCU), an LRU of the TEMS system, was re-
engineered and underwent successful environmental testing. The new design was
subsequently tested on the A-10 at Idaho National Guard, Boise, Idaho. Test results
indicate that the performance of the new FFSCU is well within the required limits. Based
on the results of this test, along the qualification test results, the A-10 SPD has concluded
that this asset is fully acceptable to replace the FFSCU as a preferred item replacement.

Section 3 of this Final Report describes the various initiatives performed as well as the
overall results of each initiative.

2

2.0 Diagnostician Technology

Giordano Automation has developed an exciting and very powerful set of tools that
implement model-based diagnostic reasoning. The run-time tool, Diagnostician, provides
automated diagnostics and can be seamlessly integrated into any test environment. The
development tool, the Diagnostic Profiler, assists the engineer in developing the run-time
diagnostic knowledge base. Together, the implementation of these tools can save
significant time and money in the development of a diagnostic capability, and result in
more efficient diagnostics.

The Diagnostician is an
implementation of model-
based reasoning. Model-
based reasoning means
that a diagnostic model of
a system or item, derived
from design data, serves as
the basis for diagnostic
reasoning. The diagnostic
model is independent of
the test program and
independent of the
sequence of tests that are
run.

In the new paradigm, a
model-based diagnostic
software object called a Diagnostician is used in lieu of programmed fault trees. In run-
time, the Diagnostician provides dynamic fault isolation without complex diagnostic
logic paths, by reading test results. The diagnostic logic is not "fixed" to a pre-
determined, static diagnostic tree, but rather is dynamic. The Diagnostician dynamically
interprets test results - test results can come from any source, in any order, and with as
many or as few test results at a time as the test source can provide. Static test trees, on
the other hand, are based upon one test result at a time, in a pre-determined sequence, and
from a fixed test source.

Design

Breaking the Wall Between Development and Maintenance

Intelligent
Diagnostics

System
Development

Diagnostic
Model

Model Correlates all
possible faults to all possible
symptoms or test results

Diagnostician provides fast,
effective fault isolation in
run-time.

Combination results in
"Dynamic Diagnostics"

Diagnostic Profiler Diagnostician

Eliminates Static Diagnostic Logic Paths in Test Programs
and Cumbersome Manual Troubleshooting Procedures in IETMs

Automated Diagnostics using Model-Based Reasoning

Figure 1: Breaking the Wall between Development and
Maintenance

3

The Diagnostician contains a diagnostic model of the item automatically converted from
design data. The model is in the form of a
connectivity matrix that represents the
propagation of faults (rows in the matrix)
to observable measurement locations and
the coverage of tests that Pass or Fail
(columns in the matrix). When used in
run-time, the software algorithms and
knowledge base (matrix) operate to
isolate faults without hard-coded
diagnostic test sequences.

In run-time, the Diagnostician interprets,
in real time, test results to perform fault
isolation. The concept of object-oriented
programs is taken full advantage of by
dealing with the diagnostic logic as an
independent entity of the test program.

Fault/Symptom MatrixUUT Design

Automatic
Design

Conversion

T1

T2

T3

Part 1 Output 1

Output 2

Part 2 Output 1

Part 3 Output 1

Part 4 Output 1

Part 5 Output 1

Part 6 Output 1

Part 7 Output 1

Part 8 Output 1

FAULTS
TESTS

T4

P2

P1

T
e
s
t

C
o
v
e
r
a
g
e

 Fault Propagation

Part
1

Part
2

Part
3

Part
4

Part
6

Part
7

Part
5

Part
8

 T1 T2 T3 T4 P1 P2

X X
X

X X
X

X
X
X X XX

XX
X

1

2

Figure 2: Fault/Symptom Matrix Generated from Design

Test Results can be input to the Diagnostician
in any order

(no pre-set sequence)
from any source individually or in sequence

operator observations, test instruments, data bus, data file, built-in
test, automatic test equipment, system panels & displays, etc.

as many or as few at a time as the test source(s) can
provide
(not restricted to one-at-a-time to follow a diagnostic tree)
zeroes-in on cause of fault(s)

Diagnostician can identify multiple faults
(Diagnostic trees follow single-fault assumption)

Diagnostician will always zero in on cause of fault
(never leaves the technician hanging)

Will only request tests that have diagnostic significance
based upon snapshot of current fault possibilities

"Dynamic" Diagnostic Capability

Figure 3: Dynamic Diagnostics

4

By separating the diagnostic logic from test, the test program becomes significantly
simpler. Further, the diagnostic logic contained in the software object can be rehosted to
any platform without any problem, because it is simply a binary file.

Using the Diagnostician, the fundamental culture of diagnostics has been changed. Tests
perform measurements and data collection and determine if those measurements are
within acceptable ranges. The interpretation of what it means if the measurement has
passed or failed is done by the Diagnostician, which dynamically, on-the-fly, interprets
test information based upon all information it receives in any order.

The Diagnostician makes use "Minimum Set Covering" algorithms that interpret the
"Cones of Evidence" produced by both pass and fail test result data. These reasoning
techniques provide for fast, accurate, flexible diagnostics, and can also isolate multiple
faults. Static test trees, on the other hand, are limited to a "single fault assumption" and in
a multiple fault situation, often do not work.

5

2.1 Diagnostician Implementation in a Test Program Set - a Software
Engineering Perspective

In order to define the differences between traditional and model-based diagnostics, one
must go back to the beginning of TPS programming. Test programs as we know them
today are written as a series of functional end-to-end tests with measurements made at the
output pins in order to assure that the system is operating correctly and ready for issue.
The diagnostic portion is handled in one of two ways. The first is to go to a diagnostic
program after the end-to-end tests are run, or to write a structured program where each
test, upon failure, is followed by diagnostic tests to isolate the fault to the level required
by the specification.

The traditional approach to the
development of diagnostic
programs requires a highly
labor-intensive process of going
through pages and pages of
schematics and circuit diagrams,
hypothesizing all potential
failure conditions, and
developing discrete test paths to
ensure fault propagation. This
process is performed by highly
skilled test engineers at a high
cost. As system complexity
increases, the ability to
comprehend logic paths
sometimes exceeds the ability of
the human mind. Test programs
have been written as long
software routines with extensive branching and jumping. A single change in an
independent test affects code throughout that program. In many cases, diagnostic tests
are duplicated throughout the program. The development and maintenance of these
programs is extremely difficult resulting in the high cost of test program sets and poor
rehostability.

The technology of computer programming has evolved from unstructured code to
structured code, and from structured code to object oriented code. Test programming is a
special type of computer program. As such, it too has evolved from unstructured code to
structured code and will evolve into object oriented code.

In this chart, the original unstructured code is called SPAGHETTI CODE because GO-
TO statements are used to control the execution flow when there are diagnostic failures.
This code had the advantage of grouping all the functional tests of a good UUT together
in one spot. This advantage comes from the unstructured nature of the test. This
unstructured code also has two important disadvantages.

SPAGHETTI CODE CO-MINGLED CODE
FEATURES

BEGIN Functional Test 1 BEGIN

TEST 1

FINISH

Tests are duplicated in
diagnostics

Diagnostics code is
duplicated

Diagnostics data for
each fault is throughout
code

DISADVANTAGES

Difficult to code

Difficult to understand

A change affects code
throughout the program

Diagnostics In The Past: Traditional Approach

GOTO TEST 2
GOTO TEST 3

MEASURE
TO 1
TO 2
TO 3

IF FAIL
GOTO TP1

IF FAIL
GOTO TP3

IF A FAIL
PROCESS TP 1

IF PASS
GO ON TO TEST 2

TEST 2

IF A FAIL
PROCESS TP 3

IF PASS
GO ON TO TEST 3, ETC.

FINISH

Figure 4: Traditional Test Program Structure

6

The first disadvantage is that the diagnostic routines are implicitly dependent on the
functional tests run before control was transferred to them. In effect, the diagnosis is
distributed between the functional tests and the diagnostic routines. In complex
situations, a maintainer finds that it is difficult to pull all the data together to understand
what the diagnostic routine is doing. Furthermore, any change to the functional tests,
either in coverage or order, can invalidate the diagnostics routines or make them
incomplete.

The other disadvantage is that the diagnostic routines contain tests that duplicate tests in
the functional set of tests. The duplicated tests are selected functional tests that occur
after the functional test whose
failure transferred control to the
diagnostic routine. Usually, this
duplication is not well
documented and a maintainer who
changes a functional test must
analyze all the diagnostic routines
to carry the changes to the
duplicate tests.

With the advent of structured
programming, GO-TO statements
were eliminated and overall
program execution was made to
flow in one direction. The result
of applying this technology to the
test program is termed CO-
MINGLED CODE in the figure
because the functional tests and the diagnostic routines are mingled together.

The diagnostic routines of a structured test program are essentially the same as those
found in the unstructured test program. Consequently, all the disadvantages of the
unstructured test program apply to the structured program.

The last evolution of computer programming is to object oriented code. The basic idea is
that code associated with different objects or functions is separated into units and the
work gets done by the cooperation of the different units.

For test programs with diagnostics, the test (stimulus and measurements) and the
diagnostic analysis are treated as separate objects. In the figure, the test objects are boxes
in the left and a Fault Symptom matrix in the middle column represents the diagnostic
object. The object-oriented approach is maintainable and modifiable where the earlier
approaches are not.

Test Programs and the Diagnostician
Model-Based Diagnostics

FUNCTIONAL TEST

BEGIN

PROCESS TEST 1

PROCESS TEST 2

Measurement for Diagnostics

FAULT SYMPTOM
MATRIX

No duplicated codeList
of faults is clearly
identified

Diagnostics data for
each fault is kept in one
location

Implementation is easy

Understanding is easy

Modifications can be
limited to one area of
code

FEATURES

ADVANTAGES

PROCESS TEST 3

MEASUREMENTS
TO 1
TO 2
TO 3

N1 => N9
Probing Acces Points

FINISH

IF ANY FAILURE,
PROCESS TP1 - TP 7

030201030201

SYMPTOM SETS

(SYMPTOMS)

TEST RESULTS

PARTS

U1

U19

U3

U2

T1 T2 Tn
End-to-End

Tests

Diagnostic
Tests

Figure 5: Model Based Test Program Structure

7

The diagnostic information is centralized in one easy to observe Fault Symptom Matrix.
In it, the relationships between tests and failures can be observed, compared to failure
modes and modified. Changes in functional test order have no impact on the diagnostic
process. Changes in the coverage of a test with respect to failure modes (yes/no/partial)
are reflected as changes to the column of the Fault Symptom Matrix describing that test.
Additions of new tests are implemented as additional Fault Symptom Matrix columns.
All of these changes go to the heart of the diagnostic problem and requires no obscuring
software structures.

FUNCTIONAL
TEST

BEGIN

TEST T1

TEST T2

TEST Tn

FINISH

Diagnostician
Send Test Results

Load DKB

Diagnostician Provides Fault Call-Out in
Run-Time Based Upon Reading Test Results

Without Hard-Coded Diagnostic Flows
FAULT CALL-OUT

XX.....XXXXX........ U1
..XXX.......XXXXX... U2
.....XX..........XX. U3
.X.....XX........... U4
X......X.XX......... U5
..XX........X.XX.... U6
..X.........X....... U7
..XXX.......XXX..... U8
.......X............ U9
.X.....XX........... U10
X.XX...X.XX.X.XX.... U11
..X....X....X....... U12
X..X.....X....X..... U13
.XXXX...X...XXX..... U14
..X..X.X....X....X.. U15
.XX.X.X.X...XX....X. U16
..X..X.............. U17
X..X................ U18
....X.X............. U19
T1_01 FUNCT_TEST
 T1_02 FUNCT_TEST
 T1_03 FUNCT_TEST
 T1_TP1 DIAG_TEST_1
 T1_TP2 DIAG_TEST_1
 T1_TP3 DIAG_TEST_1
 T1_TP4 DIAG_TEST_1
 T1_TP5 DIAG_TEST_1
 T2_01 FUNCT_TEST
 T2_02 FUNCT_TEST
 T2_03 FUNCT_TEST
 T2_TP1 DIAG_TEST_2
 T2_TP2 DIAG_TEST_2
 T2_TP3 DIAG_TEST_2

[FUNCT_TEST]
T1_01=F;
T1_02=P;
T1_03=F;
T2_01=P;
T2_02=P;
T2_03=P;
T3_01=P;
T3_03=P;

U10
[FUNCT_TEST_2]
T2_01=P;
T2_02=P;
T2_03=P;
[FUNCT_TEST_3]
T3_01=P;
T3_03=P;

Request Current
Fault(s) Identification

Request Test that
Provides Best
Diagnostic Resolution

Library of Functions
Approx. 30

Diagnostic Object

Figure 6: Diagnostician Interaction with Test Program

In the object-oriented approach, duplication of tests is unnecessary. The same test can be
used as part of a functional test or a diagnostic test depending on the status of the UUT
being tested. The elimination of duplication greatly simplifies maintenance, reduces
development cost and improves run-time effectiveness.

The result of using the Diagnostician is object oriented diagnostic capability with no
Diagnostic Flow Charts.

The impact of this technology is dramatic! Savings up to 30-40% of the overall TPS
costs can be realized. Maintenance of the test program, storage and use of legacy data,
rehosting, updates, and porting to various platforms including portable maintenance aids

8

are all enabled by the new paradigm. And, a Maintenance Simulator is available which
allows the user to simulate the diagnostic effectiveness achieved before committing to
coding the test software or building the system hardware or test hardware. Concurrent
engineering of support for diagnostics is now a reality!

The Diagnostic Profiler supports the development of the diagnostic software object (the
diagnostic model). The selection of test points and the assessment of fault isolation
probabilities as well as validation of these probabilities are all done using the Diagnostic
Profiler during development of the TPS. Diagnostic engineering and test engineering are
uncoupled. Test programming tools are used to write tests. In the process of writing
these tests, the test engineer must define Pass/Fail (P/F) criteria for each response value
being measured and convert test result data for each measured parameter into a P (Pass)
or F (Fail). This function can be implemented utilizing a simple high level language
subroutine which accepts measurement test results and associated tolerances values as
inputs and outputs a "P/F" character.

Use of the diagnostic object in run-time to perform fault isolation is done by the
Diagnostician. To incorporate diagnostics into the test program, a single "WHILE" loop
can be used: WHILE there is another test that can further isolate the fault, ask the
Diagnostician for the next optimum test to perform, run that test, and send test results to
the Diagnostician.

The methodology described is straightforward and well within the responsibilities and
expertise of a test engineer. Utilizing the Diagnostician paradigm, the test engineer
focuses on what he does and knows best: testing. The specifics of diagnosis, which is a
function of UUT topology and behavior, is left to automated reasoning algorithms, which
are better suited than a human in resolving complex diagnostic situations.

In addition to reducing TPS development time and cost, the model-based diagnostics
reasoning approach is easily updated for design changes and allows fault simulation for
diagnostics Verification and Validation (V&V).

9

2.2 Diagnostician Run-Time Operation

The DiagnosticianTM is a major innovation to the overall test process. To support
embedded and off-line applications, the run-time DiagnosticianTM has been designed to
operate in a myriad of host platforms.

The new model-based diagnostics paradigm treats the diagnostic logic as an "object"
which interacts with test results to perform fault isolation. In the next generation test
system, the test executive will be replaced by a "Client" which invokes the "Services"
required by the system. The test object will communicate to the Diagnostician object in
the Windows Dynamic Link Library (DLL) protocol. For the purpose of this discussion
on interfacing the Diagnostician in the Windows-based framework, the term Client will
be used. Client is used here as a generic name for any Windows-based software, which
communicates to the Diagnostician using DLL. Note, however, that the operating modes
discussed in this paper may be extrapolated to any operating system: DOS, Unix, X-
Windows, VMS, or any test environment including LabVIEW, CVI, HP-VEE, ATLAS,
etc.

Since Diagnostician functions are callable as "building blocks" the programmer can
implement diagnostic function in any way that fits his test program structure and test
philosophy. We show in the next few paragraphs, examples of three different approaches
to using Diagnostician functions to effect different test strategies. These examples
represent different scenarios for test execution, sequencing and program control based
upon using the Diagnostician to perform diagnostics. These examples are characterized
as follows:

Diagnostician in Control Example -

Where the Diagnostician manages the flow and execution of tests.

Go/No-Go Test in Control Example -
 Where the Client calls and implements a set of functional, or go/no-go

tests, passes the results to the Diagnostician, and the Diagnostician
subsequently takes control of the flow and execution of tests.

Mixed Control Example -

Where the control of the flow and execution of tests can be passed
between the Diagnostician and the test object within the Client.

10

In the GO/NOGO
Control Mode, the Client
software will first execute
all of the go/no-go
(functional/ performance)
tests. If, at the end of the
program, any of the tests
fail, the Client initiates the
Diagnostician using a
simple function call and
passes to it all of the test
results. Next the Client
requests either an
ambiguity group call-out
or the next best test to be
executed. This mode is
good for short GO/NOGO
test programs where each
test does not require a
large amount of setup time
or long testing sequences.

In the Diagnostician Control Mode, the Diagnostician is used to make all decisions on
what tests are to be executed. In this mode, the Client initiates the Diagnostician before
any tests are executed. Then the Client issues a DLL function call to the Diagnostician to
identify the first test to be executed. The test to be executed is passed to the Client as a
response to the function call. The Client will execute only those tests the Diagnostician
requests until a final ambiguity group is found. The final ambiguity group is found when
either the
ambiguity group
contains only one
replaceable part,
or when no more
tests exist which
will break up the
current ambiguity
group. This mode
is good for tests
that require a large
amount of setup
time or where tests
are lengthy. A
diagnosis can be
made using the
least amount of
tests and testing time. Only those tests with any diagnostic significance will be executed.

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Go/No-Go Control Mode

Client initiates
Diagnostician

Client executes
go/no-go test (s)

Client reports
test result(s)to
Diagnostician

Client requests
identification of
fault call-out or
ambiguity group

Fault Call-Out or
Ambiguity Group

If all tests pass
 Ship Product

Diagnostician reports a fault
call-out or ambiguity group

If any go/no-go tests
fail

Test Results

Client terminates
Diagnostician

Run Acceptance Test (RFI test or
end-to-end performance test)

All Diagnostics Performed by Diagnostician.

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

adrGetSuspect
adrGetNextStep

Figure 7: Go/No-Go Control Mode

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

identifies/selects
which test (s) to
be executed

Client executes
test (s)

Client reports
test result(s) to
Diagnostician

Client requests
identification of
current
ambiguity group
and/or next step

Diagnostician reports next step:
either another test or a
fault call-out or ambiguity
group

[Test 2]
TP-abc=P;
TP-def=P;
TP-ghi=F;

Execute Test 2

Fault Call-Out or
Ambiguity Group

Diagnostician Control Mode

Client terminates
Diagnostician

Test 2

Runs any test needed to fault isolate.
Tests selected by Diagnostician.

Client initiates
Diagnostician

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

Client requests
Next Step

adrGetSuspect
adrGetNextStep

Figure 8: Diagnostician Control Mode

11

The Mixed Control Mode is a
combination of the two
previous test modes. The
Client will start out in the
Go/No-Go Control Mode. All
Go/No-Go tests will be
executed and if a failure
occurs, the Client will initiate
the Diagnostician and perform
as in the Diagnostician Control
Mode. This mode can either
stop at first failure in the
go/no-go test or can run all
go/no-go tests at once. The
Mixed Control Mode is good
for test programs with both
short and long test sequences.
The shorter tests can be
executed at the top of the
program. If they fail first, then
the Diagnostician will reduce the number of tests and the testing time required to make a
fault call-out.

The software architecture of the Diagnostician is that of a server. The Diagnostician
provides diagnostic services to any client program. The Diagnostician acts as a server
task that performs functions that provide diagnostic services. When properly interfaced
on the client side, the Diagnostician functions as a library of subroutines within the client
program.

The Diagnostician software, in Windows, is compiled as a Dynamic Link Library. It is a
true diagnostic server that provides diagnostic services to a client program. That client
program may be a test executive, test programs, LabVIEW, ATEasy, HP-VEE, or any
other independent program which "sits in-between" the Diagnostician and the test
program.

For example, in LabVIEW, these Diagnostician DLL function calls have been
implemented as a series of virtual instruments, and the flexible test strategies in the
previous discussion can be implemented easily, as shown on the following page.

Client initiates
Diagnostician

Client executes
go/no-go test (s)

Client reports
test result(s) to
Diagnostician

Fault Call-Out
Current Ambiguity Group
Next Test

If all tests pass
 Ship Product

If any go/no-go
tests fail

Client terminates
Diagnostician

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Client requests
identification of
next step

 (if a test exists which can further
reduce current
ambiguity group)

Mixed Control Mode

Client determines
whether to execute
additional test or replace
current ambiguity group

[Test 1]
TP1=P;
TP2=P;
TP3=P;
[Test 2]
TP4=P;
TP5=F;
[Test 3]
TP9=F;
<REMAINING>=P;
[Test 4]
<ALL>=P;
[Test 5]
TP23=F;
TP28=P;
TP29=F;

Run Acceptance test (RFI or end-to-end tests)
Diagnostician picks additional tests to fault isolate

adrStart
adrLoadDKB

adrAddData
adrAddDataFile

adrUnload

adrGetSuspectCnt
adrGetSuspect
adrGetNextStep

Figure 9: Mixed Control Mode

12

adrdll.dll
modelname.dkb
modelname.cfg

DLL Function
Calls

ADRVI.LLB

Diagnostician
Functional

Virtual
Instruments

DOC.LLB

Operational
Modes

(LabVIEW Program
Templates)
USES.LLB

adrloaddkb
adrstart

ASK
DOC

(ask_doc.vi)

OPEN
DOC

(open_doc.vi)

TELL
DOC

(tell_doc.vi)

CLOSE
DOC

(close_doc.vi)

Diagnostician Control Mode

ASK
DOC

OPEN
DOC

TELL
DOC

CLOSE
DOC

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

Go/No-Go Control Mode Mixed Control Mode

Diagnostician

adrdddata
adrdddatafile

adrgensuspectfile
adrgetfaultlist
adrgetnextstep

adrenddata
adradrunload

ASK
DOC

OPEN
DOC

TELL
DOC

CLOSE
DOC

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

F P P

Test 1
Test 2
Test 3
Test 4
Test 5
Test 6
Test 7
 .
 .
Test N

OPEN
DOC

CLOSE
DOC

TELL
DOC

ASK
DOC

DLL Library
ADRDLL.DLL

Figure 10: Diagnostician Integration into LabVIEW Environment

13

3.0 Summary of Tasks Performed Under Contract and Task Results

3.1 TEMS Sustainment Activities

A number of activities were performed to improve the overall sustainability of the TEMS
system. These activities, their results, and deliverables are defined in the following
paragraphs.

3.1.1 UDU TPS

Test Program Sets (TPS) were developed for the Shop Replaceable Units (SRU) of the
TEMS Umbilical Display Unit (UDU). These TPS were developed using Giordano
Automation’s Diagnostician to provide automated diagnostic capability.

The SRUs for which TPS were developed have the following designations:

Table 1: TEMS UDU SRU Test Program Sets
CPIN SRU TEMS UDU Nomenclature

85E-USQ85/M390-U001-00A 090280 Display CCA
85E-USQ85/M390-U002-00A 090285 Switching A
85E-USQ85/M390-U003-00A 090290 Switching B

3.1.2 TEMS CCA TPS Re-Host

 The major objective of this effort was to re-host selected TEMS SRUs from the
MATE 390 test station to the APST test station. The MATE 390 Test Programs were
enhanced in a previous contract using Giordano Automation’s powerful set of tools that
implement model based diagnostic reasoning. The run-time tool, the Diagnostician,
provides automated diagnostics and can be seamlessly integrated into any test
environment. Since the Diagnostician is platform independent and all the diagnostic
logic is contained in a binary file called the Diagnostic Knowledge Base (DKB), porting
the SRUs from MATE 390 Atlas to APST LabWindows CVI environment was easily
accomplished at a reduced cost while preserving 100% of the diagnostic knowledge.

 The Diagnostician has proven that the re-hosting and porting of the TEMS TPSs to
a new platform (APST Tester) was easily accomplished at a reduced risk and cost. The
three main reasons that this was achieved: the platform independent diagnostics, easier
porting of stand-alone test code, and the use of the Diagnostic Profiler’s automatic code
generation tool.

 The diagnostic logic was decoupled from the TPS code and represented in a
platform independent diagnostic knowledge base. This Diagnostic Knowledge Base
(DKB) was simply copied and re-ported to the new platform. The resulting MATE 390
test code was significantly easier to port over to the APST tester. All of the “GOTO” and

14

“IF-THEN-ELSE” statements necessary for coding fault tree diagnostics were removed
resulting in smaller, less complex, stand-alone tests. Additionally, the number of probes
was reduced while achieving better diagnostics. The code that remained was a collection
of stand-alone functional tests and measurements. The straightforward stand-alone
nature of these tests made them much easier to analyze. This simplified the ITA design
and development to the APST station interface. It was also much simpler to rewrite the
functional tests in the LabWindows CVI environment. When the functionally of a test
needs to be re-structured, due to the limitations of the APST tester, the Diagnostic
Profiler helps in assessing the diagnostic implications.

 The Diagnostic Profiler’s code generation tool was used to generate the APST TPS
automatically. This tool uses two files for input parameters, the Diagnostic Knowledge
Base (DKB) that contains all the information about the tests, and an APST specific
template file that contains specific information about the APST LabWindows code. The
generated TPS has all the APST GUI code, all the diagnostic calls to the Diagnostician,
and all of the stub functions for each functional test and measurement.

 The efforts described in this Final Report were based upon a contract to port and re-
host the Diagnostician and the Diagnostic Knowledge Based across selected TEMS EPU
circuit cards. The automatic diagnostic reasoning approach that Giordano Automation
used in re-hosting the test program sets has been accomplished using a set of tools
developed by Giordano Automation. The run-time tool, called the Diagnostician, provides
automated diagnostics that is integrated into the Test Program. The development tool, the
Diagnostic Profiler was used to create the Diagnostic models.

In our previous contract, we reduced the complexity of the TEMS TPS code by
inserting the Diagnostician. The traditional troubleshooting trees that were previously
implemented with several, hard to maintain “GOTO” and “IF-THEN-ELSE” statements,
were replaced with a simple conversation loop with the Diagnostician. By eliminating
this complex diagnostic hard-coded logic, the resulting TPSs are vastly easier to
maintain. Also, transporting the modified TPSs and the Diagnostician to an alternate test
resource is much more straightforward (APST tester). This approach has also allowed for
a significant reduction in the number of lines of code for each Test Program.

3.1.2.1 Test Station Environment

The FT900S Advanced Power Supply Test System (APST) is an existing Test
Station located at Warner Robins ALC. The APST is a state of the art environment for
power supply testing and repair. The APST is also commonly used to test Shop
Replaceable Units (SRUs).

3.1.2.2 APST Control and Support Software

The software used on the APST is National Instrument’s LabWindows CVI. Test
programs are written in C using LabWindows CVI libraries. The operation system used
on the APST is the MS-Windows 2000 operating system.

15

3.1.2.3 Re-Host the TEMS SRU Test Program Sets

The major task performed on this contract was the re-hosting of the selected

TEMS SRU Test Program Sets (TPSs) from the MATE 390 tester to the APST test
system. Table 3 shows the applicable SRU TPSs, which were re-hosted under this
contract.

Table 2: TEMS EPU SRU Test Program Sets Re-Hosted on APST
CPIN SRU TEMS EPU

Slot Configuration
85E-USQ85/APST-U003-00A 091350-302,304,305,306 A6
85E-USQ85/APST-U001-00A 091450-(301-314) A8
85E-USQ85/APST-U001-00A *091460-(301-306) A8
85E-USQ85/APST-U002-00A 9383755-10 A8

* This card is very similar to the 091450. The models and programs are similar enough that one
model and one test program can be used for all variations/revisions of the 091450 and 091460
A/D converter cards respectively.

3.1.2.4 Sequence of Tasks to Re-host the TEMS SRU Test Programs

 For each of the SRUs, the following tasks have been performed to re-host the
TEMS TPS from the MATE 390 to the APST Tester:

1. Design and develop an Interface Test Adapter (ITA) to correlate between the
APST test station and the SRU.

2. Run the SRU Diagnostic Model through the Giordano Automation’s Diagnostic
Profiler code generation tool. The resulting test program contains all the
Diagnostic hooks to the run-time Diagnostician with interfaces to the Diagnostic
Knowledge Base. The newly generated TPS also contains the look and feel of the
APST user interface and a stub test function for each of the stand-alone functional
tests.

3. After generating the Test Program, each of the stub functions is written using the
APST instrumentation and the Labwindows CVI environment to re-create the
functional equivalent of the original Atlas functional test and measurement.

4. Verify the completed TPS and diagnostics on the APST test station and prepare a
data package

5. Perform a sell-off of each TPS to the designated WRALC Air Force software
representatives including fault insertions.

6. Provide updated CPIN software on suitable media for release and distribution.
7. Update TPI (Test Program Instruction) by incorporating the APST test station into

the documentation.

16

3.1.2.4.1 Step 1 – Design and Develop the Interface Test Adapter (ITA)

Design and develop an Interface Test Adapter (ITA) to correlate between the APST test
station and the SRU. The ITA has two separate connectors, one is a 60-pin Amphenol
connector used for the RPM Fuel Flow Conditioner SRU, and the other is a 90-pin
Amphenol connector used for all of the A/D Converter SRUs. All of the SRU signals
were analyzed and interpreted to determine if they were analog or digital signal. Once
the signals are established, there were integrated into the APST test station’s interface.

3.1.2.4.2 Step 2 – Run the Profiler Code Generation Tool

The next step in the process is to run the Profiler Code Generation Tool. The diagnostic
model has already been established using the Diagnostic Profiler. This diagnostic model
contains all of the test and measurement names as well as the diagnostic implications on
the SRU. The profiler code generation tool uses this diagnostic model and a tester
specific template file to automatically create the test program. The resulting test program
contains all of the code necessary for the user look and feel, all of the diagnostic
interfaces through the diagnostician and a stub function for each test and measurement
defined in the diagnostic model.

3.1.2.4.3 Step 3 – Write the APST Functional Test and Measurements

 The next step is to insert the LabWindows CVI code into each stub function. These tests
duplicate the functionality of the stand-alone MATE Atlas code.

3.1.2.4.4 Step 4 - Verify the integrated TPS on APST and prepare a data package

Next, in preparation for TPS sell-off, the integrated TPS, consisting of the LabWindows
CVI test code and the DKB, is verified on the test station. This involves the re-hosting of
the ATLAS code and DKB onto the APST station and running them together to
determine appropriate operations. This also involves running fault insertions and
preparation of a data package in preparation for a formal Government sell-off.

3.1.2.4.5 Step 5 – Perform Sell-off

A formal sell-off process was performed for each test program. The sell-off included
review of the data package and fault insertions to determine that the test program
operated correctly. Faults were inserted on the UUT, and the test program was run to
determine that the fault was correctly detected and isolated by the test program. An
interesting note is that the Government certification team came to have a full
understanding of the tools used in the overall process, and came to understand that the
Diagnostic Profiler tools created a “representation” of the UUT and it’s diagnostic
behavior. The diagnostic approach is a deterministic approach, not a probabilistic
approach. Once the certification team really understood how the tools worked, and that

17

the tools resulted in very consistent test program results, the requirement for fault
insertions was reduced, with more reliance with the Profiler’s V&V tools. Using the
V&V tools, a much broader scope of faults can be verified than with limited fault
insertion testing.

3.1.2.4.6 Step 6 - Provide updated CPIN software for release and distribution

The updated CPINs were released on appropriate media (CD-ROM’s) and for storage in
the Software Control Center, in accordance with Air Force requirements.

3.1.2.4.7 Step 7 - Update TPI (Test Program Instruction) documentation

The Test Program Instructions (TPIs) were modified for the APST test station. These
updates included significant overall improvements for operation of the TPS by test station
operators. Additionally, corrected and up-to-date schematics, (the result of step 1) were
incorporated into the TPI.

3.1.2.5 Certification of TEMS SRU Test Programs

 Certification of the TEMS test programs was conducted in the course of this
project. LY Software in WRALC conducted the certification and was in conformance to
their acceptance requirements for each individual TPS. As part of the Certification
process, the Air Force ran each SRU test program on the test station to verify its
operation. This included both end-to-end (functional) tests as well as diagnostic tests.
Representative faults were injected (simulated) in the units under test to force diagnostic
test procedures to be executed. Full data logging was done during the test program
execution and the logged results were printed out, and put into storage with the unit under
test.

3.1.2.6 Development of Test Program Instructions for Designated UUT TPSs

 Test Program Instructions (TPIs) for the TEMS SRU test programs were prepared
and delivered in accordance with the requirements provided by the WRALC certification
team. Giordano Automation prepared Test Program Instruction documents for the TEMS
Shop Replaceable Unit (SRU) Test Program Sets (TPS) as listed in Appendix B.

As part of this task, Giordano Automation provided the Air Force with concise
documentation relating to the all of the information required to operate and maintain the
test program sets. In addition, much of the technical data that had been previously lost or
that was previously incomplete in the various related Air Force Tech Orders was
supplemented with corrected and complete information.

Some of the highlights of the resultant improved documentation and information

in the TPI are listed below:

• Inclusion sketches representing Interface Test Adapter (ITA) installation and
UUT setup were included.

18

• Full probe point listing and probing diagrams for each probe point called out
in the test program.

• UUT Schematic
• UUT parts list
• UUT assembly drawings
• ITA data base
• Test Program usage of test station resources (stimulus and measurement

instrumentation)
• Correlation of UUT name, LRU, designation, Part Number, Revision Level,

CPIN, TO Number, Windows 2000, etc.

The Test Program Instructions were developed based upon the requirements
specified in applicable Mil Standards and specific WRALC format requirements. The
content of the Test Program Instructions include:

• Set-Up Procedure.
• List all cables required
• List ITAs required
• Diagram of the on-line set-up including the relative positioning of UUT,

ITA and ATE.
• Testing Procedure: Provide program start procedures.
• Testing data table: Provide all necessary operator instructions and

diagrams, which are impractical to include on a test station display.

The TPI provides information needed for testing (e.g., hook-up, probe point
locations, or other programmed operator intervention). Also, the TPS conveniently
provides this information under control of the test program.

3.1.2.7 CSCI Delivery

A copy of the Computer Software Configuration Item (CSCI) Components Delivery
Forms are provided on the following pages.

19

Delivery of Computer Software Configuration Item (CSCI) Components

CSCI
Components

The following configuration items were delivered to the LYSRP Software Control
Center (SCC) on ? DATE

CPIN # Revision CPIN

Date
Qty Security

Classification
Type Media

85E-USQ85/APST-U003-00A 000 5 Nov 03 4 Unclassified CD
85E-USQ85/APST-U003-00D 000 5 Nov 03 3 Unclassified CD

Request the following information be provided by the Weapon System Software Manager and
returned to the originator either by electronic transmission or FAX (6-1316).
Distribution Is being accomplished by the development activity
 X Must be accomplished by the SCC – Users are on official ID
 Is not required

TCTO
Announcement

In accordance with TO 00-5-15, this software release will be announced by the
method indicated below.

 *TCTO #_________________________________
 *Letter of transmittal
 Electronic message
 Electronic bulletin board
X Not required – Software is for Depot use only

*Announcement documents will / will not be
provided for packaging with the software

Media
Reproduction

Reproduction Equipment Nomenclature Location of Equipment and POC

 APST Tester Bldg. 645/ POC-Dwayne Gaines

Approval I certify to the best of my knowledge the above listed CSCI data is correct and

acceptable. The software, having satisfactorily completed weapon system program
testing, is authorized for use as CPIN masters and reproducibles for distribution. The
LYSRP SCC is authorized to provide software support utilizing directions furnished
on this form.

 Ike Golden, ES, WRALC/LESBA, 6628 X725
Name, Title, Office, Phone Signature, Date

Figure 11: EPU 091350 Configuration Slot A6 CSCI Delivery

20

Figure 12: EPU 9383755-10 Configuration Slot A8 CSCI Delivery

21

3.2 TEMS Fuel Flow Signal Conditioning Unit (FFSCU) Re-
Engineering

The Fuel Flow Signal Conditioning Unit (FFSCU) is an airborne LRU that reads fuel
flow data and provides a corresponding input to the TEMS EPU. The FFSCU has had
MICAP issues. The Air Force has no organic test or repair capability for the unit. The
OEM has traditionally been unresponsive to Government requirements for repair of units.
This is primarily because of the age of the item, the fact that the OEM has gone through
various mergers and acquisitions, and because much of the corporate history has been
lost. Also, the relatively low demand rate on the part of the Air Force makes this basically
a nuisance issue for the OEM. As a result, several years ago, the OEM had raised the
cost of repair of FFSCU units to approximately 10K per unit. Additionally, the FFSCU
has DMS issues, which make repair difficult.

As a result of these issues, the TEMS System Manager initiated a project to re-engineer
the FFSCU by a new manufacturer, and, at the same time, provide the organic AF depot
with the capability to test the FFSCU.

The original intention was to re-engineer a FFSCU to the exact specifications of the
original FFSCU. Subsequent discussions with the A-10 SPD resulted in the A-10
requirements for a FFSCU that complies with an updated set of specifications for the A-
10 aircraft. A new specification was developed, and the vendor is currently in the
process of performing independent laboratory tests for acceptance of the FFSCU. When
these tests are successfully completed, flight tests and flight qualification will be initiated
with the A-10 SPD.

The KC-135 consolidation of data acquisition systems is anticipated to eliminate the use
of the FFSCU on the aircraft that undergo the upgrade. However, whether or not the
FFSCU function has been successfully integrated into the FDR is an issue. The
possibility exists that the FFSCU will continue to be required on the KC-135. If the
FFSCU is not required, then there will be a large number of units turned in, and these
units can be used as spares. If the FFSCU is indeed required on the KC-135, then supply
of good units to both A-10 and KC-135 users will remain an issue.

A contract was put in place to accomplish the following:

1. Update the design with new components to eliminate the obsolete components
2. Repair a total of 17 units by either salvaging good modules from returned

units or replacing failed modules with the revised layout.
3. Generate a functional test process and associated hardware/software to

accomplish this testing as an organic Air Force process.
4. Provide design documentation (schematics) at a level necessary to allow for

organic AF functional testing.

Based on A-10 updated requirements for environmental characteristics of all items being
put on the aircraft, the initial effort was stopped by the TEMS Program Manager at the

22

time, David Garza. The program was re-initiated as a FFSCU re-design effort to satisfy
A-10 environmental requirements.

Giordano Automation worked with the A-10 SPD to identify updated environmental
requirements, and prepared an updated FFSCU requirements specification, which was
coordinated through the TEMS office and the A-10 SPD. A new effort was initiated with
APEX based on the updated specification.

The updated FFSCU design was tested through an independent laboratory. The results of
this test were documented and provided to the Air Force. The TEMS Equipment
Specialist inspected the APEX facilities and processes and certified APEX as an
acceptable vendor for the FFSCU.

Giordano Automation developed a test program set for the FFSCU for depot level testing.

The results of this effort are that Apex successfully completed the environmental
Qualification Testing of the re-engineered FFSCU. Two units were shipped to the A10
SPD for Flight Test. The production facility in WRALC is now actively testing and
screening FFSCU units organically using the TPS developed, in support of the immediate
MICAP needs.

23

Figure 13: Letter of Certification of APEX

24

The original number of FFSCUs provided to Giordano Automation was 29. Two units
were previously returned to the Air Force and put into supply as unserviceable (because
APEX had not yet been certified as a repair source). Four units were retained by APEX
for the re-engineering effort to be provided to the Air Force in flight-ready condition for
the purpose of qualification testing. A listing of these units is shown in Table 3.

Table 3: Identification of FFSCU Units

Unit # Serial No. Status Comments Tested Notes
1 0100273 Good Cand. Golden Unit? (Apex has it) done At APEX
2 0190089 Good Cand. In WR-ALC(first batch of 3) 23-Sep
3 0190392 Good Cand. In WR-ALC(first batch of 3) 23-Sep
4 0100290 Good Cand. Golden Unit? (Apex has it) 3-Sep At APEX
5 0100221 Good In WR-ALC 9/8/03 30-Sep Good 10/9
6 0190336 Unknown WR-ALC 8/27/03 (loose connect) 23-Sep
7 0100316 Good In WR-ALC 9/15/03 2-Oct Good 10/9
8 0100459 Good Cand. WR-ALC 9/2/03 (loose connect) 2-Oct
9 19299-68 Good Cand. in WR-ALC(Natel unit)(9/15/03) 30-Sep
10 19299-51 Good In WR-ALC 9/2/03 30-Sep Good 10/2
11 0190037 Good In WR-ALC 8/27/03 30-Sep Good 9/30
12 0100545 Good In WR-ALC 8/27/03 30-Sep Good 10/2
13 0190412 Unknown In WR-ALC 9/8/03 23-Sep
14 0190088 Unknown In WR-ALC 9/8/03 23-Sep
15 0100493 Good Cand. In WR-ALC 9/8/03 30-Sep
16 0100444 Unknown Apex has for unit #3 flight done
17 0100264 Unknown In WR-ALC 9/2/03 23-Sep
18 18349-05 Unknown In WR-ALC(Natel Unit) 9/8/03 done
19 0100255 Bad In WR-ALC 9/8/03 done
20 0100412 Unknown WR-ALC 9/8/03- bad dat amp? 9/10
21 0190235 Unknown Apex has for unit #4 flight done
22 0190189 Unknown WR-ALC(mil-com unit)(9/15/03) 23-Sep Left Chan. Bad
23 0100007 Good In WR-ALC 9/15/03 GOLD Good 9/30
24 0190125 Unknown In WR-ALC 8/27/03 done
25 0100300 Apex card Apex has for unit #1 flight done
26 19299-71 Good/shipped Fixed and sent to WR 03/31/00 done
27 19299-12 Good/shipped Fixed and sent to WR 03/31/00 done
28 0100099 Apex card Apex has for unit #2 flight done
29 19299-103 Good In WR-ALC 9/2/03-data varies? 30-Sep Good 10/8

25

Figure 14: FFSCU Design Information provided by APEX

26

3.3 TEMS IEPU LRU Depot Test Program Set (Re-directed)

Giordano Automation was tasked to develop an LRU test program for the IEPU in March
2003. At that time, Giordano Automation commenced a number of activities related to
the development of the test program. In early July, the Air Force requested that we stop
working the IEPU TPS.

At that time, Giordano Automation was re-directed to direct 70K to support a funding
shortfall in UDAS functional testing, including 40K to fund Lockheed for the use of the
CSFDR hotbench for UDAS functional testing.

Prior to this effort being halted, Giordano Automation successfully integrated the
Diagnostician into the BRAT software environment using the BRAT SDS (Software
Development Station). The Diagnostician runs as a separate process and communicates
with the TBASIC TPS code via file I/O. A TBASIC user library was created that
encapsulated all the communication between the TPS program and the Diagnostician.
This library fits directly into the TPS Style guidelines for programming on a BRAT
station.

Additionally, using the BRAT TPS Style guide and the TBASIC Diagnostician Library
described above a shell TPS program was created for 4 TEMS SRUs. These include the
091300, 091200, 091250, and the 091150 UUTs, which are currently hosted on the
MATE390 System. These shell programs contain all the diagnostic logic, the diagnostic
knowledge base, and a stub function for each functional and diagnostic probe test needed.
This shell program was executed on the SDS in simulation mode for each of the SRUs.
During execution, dummy test results were entered using the stub functions, which
prompt the user for pass/fail condition. We were able to verify the correct diagnostic flow
and callouts for each SRU. What remains to be done for these TPSs is to replace the stub
functions with real test functions to perform the corresponding test and measurements.

3.4 AGETS

3.4.1 AGETS Long Term Sustainment Study

The AGETS Long Term Sustainment Study was completed and a Final Report with short
term and long term recommendations was provided to the Air Force. A briefing on the study
and its results was prepared and presented to the AGETS IPT meeting and AGETS USER
meeting. The study resulted in Air Force implementation of the majority of the short term
recommendations.

The long term studies resulted in an action plan by the program office to create and
implement an AGETS sustainment roadmap for the future. The requirements for the DAA
Assembly was addressed in the adoption and incorporation of the ADETS Engine test
directives into the AGETS Roadmap and is subsequently maintained and controlled through
the AGETS program office and the AGETS MASTA support group at WRALC. Subsequent
hardware modifications are defined with the AGETS roadmap.

27

3.4.2 AGETS Relay Study

The AGETS Relay Study was completed, and the results were documented in a AGETS
Long Term Sustainment Study Report as a series of findings and recommendations related to
AGETS Relays. This was provided to the Air Force. A briefing on the study and its results
was prepared and was presented to the AGETS User conference. The relay recommendations
resulted in the implementation of the relay upgrade prototype. A relay prototype has been
designed, fabricated and delivered to the Air Force and is undergoing testing.

3.4.3 AGETS System Upgrades

Four upgrade kits as defined by AF TO 33D4-6-690-519 were delivered. One kit was
installed in the Engine Test System (AGETS) at WR-ALC. Another kit was installed in the
Engine Test System (AGETS) at OK-ALC. The other two kits were delivered to Kadena
AFB in Okinawa. Key component sparing was included as required by the Air Force.

3.4.4 AGETS Software Support (OnBoard Software Subcontract)

Giordano Automation subcontracted AGETS software support to OnBoard Software.

During the March 2004 reporting period OnBoard completed the Installation and
Acceptance of the Rev 3 Software Revision. Onboard delivered the Software Test Report,
Version Description Document and the Revised Software Specification for the AGETS
Test Software.

The CPINS and supporting documentation were released to the WRALC Software
Control Center.

28

3.5 UDAS Test at LM Aero

The UDAS prototype was tested at the F-16 Crash Survivable Flight Data Recorder (CSFDR) Hot
Bench at Lockheed Martin Aerospace in Ft. Worth, Texas. The testing was completed during the
first two weeks of December 2003. The tests were witnessed by LM Aero and F-16
representatives, and were successfully concluded. The input flight profiles were properly
processed by UDAS. These tests completed the initial phase of UDAS development on the LM
hot bench and verified that the UDAS open architecture is feasible. The tests also demonstrated
that the F-16 card stack will interface with the aircraft system.

29

3.6 IEPU TPS TASK RE-DIRECTION

During the reporting period of December 2003, a redirection of the IEPU task was
received. The scope of the redirection was provided in a revised statement of work from
the program office and was accepted. These tasks are described below.

3.6.1 FFSCU Emergency Repair for KC-135

The FFSCU TPS was completed and brought into the production line on a high-priority
basis. The result of this effort allowed GAC and the Air Force to put an on-going supply of
units back into service. The depot has been able to support specific MICAPS that have
occurred by using unknown “F” condition units and screening to provide flight-worthy
assemblies. This activity has successfully resulted in responding to an immediate need
and providing short term response in supporting the demand for improved test approaches
and organic depot support to accomplish a short term need at a significant savings to the
Air Force.

3.6.2 Mishap Investigation

Giordano Automation participated in an analysis related to a TEMS Mishap investigation
of an event associated with the A-10 engine. The analysis was performed in coordination
with the TEMS PM and OO-ALC Engine Management personnel, A-10 SPD, and WR-
ALC organizations to perform this investigation.

In review on the subject investigation with respect to TEMS operations, the following
steps were taken:
 1. Coordinated analysis with TF-34 Engine Management organization at OC-ALC
 2. Analyzed reported engine conditions associated with mishap
 3. Correlated engine conditions to TEMS parameters
 4. Correlated MALTRAN criteria across TEMS Engineering Data (completed)
 5. Verify consistency of MALTRAN criteria across TEMS CPIN, Engineering
Data and TO (on-going)

With respect to issues that a serious engine event could have occurred without producing
a MALTRAN event, the following observations and conclusions were offered:

1. The TEMS system and associated algorithms for declaring an event were
generated many years ago. Severe memory limitations at the time the system
was developed are a likely reason. Any updates to the TEMS system that
includes additional memory should include continuous monitoring and
recording of key engine parameters.

2. The TEMS algorithms were designed to trigger Level 1 and Level 2
MALTRAN events without producing an inordinate number of false alarms.
There is a traditional dilemma in establishing tolerance limits and ranges to
produce true alerts versus false alarms.

30

3. The TF-34 Engine Management organization at OC-ALC is conducting a
detailed review of the TEMS algorithms starting in OCT 04. The TEMS
Program Office will participate in this review. The review represents the first
time since the TEMS system was developed that a comprehensive review of
the algorithms has been conducted. Since the engine has gone through various
updates over time, this review is past due. GE, the engine manufacturer, will
participate in this review.

4. The TEMS program office is working with the A-10 SPD to plan for
modernization of the TEMS system. One goal of the modernization is to
provide more memory so that more data can be collected. Another goal would
be to modernize the TEMS software such that the TEMS algorithms are more
flexible, robust and object-oriented. The definition of the triggering of
MALTRAN events, however, will remain the responsibility of the engine and
aircraft management organizations.

5. A working group consisting of the A-10 SPD, the TF-34 Engine Managers
and the TEMS Program Manager must be established to ensure the near-term
and long-term update and growth requirements for TEMS in particular and
also data acquisition on the A-10 aircraft in general.

6. A better working relationship between the A-10 SPD, the TF-34 Engine
Managers and the TEMS program manager must be established. The A-10
SPD currently has data acquisition plans and efforts in place that are not well-
coordinated with the TEMS or TF-34 cognizant organizations.

7. Since the TEMS program office primary goal is to support the end user of the
TEMS system, inputs should be strongly encouraged and an on-going
dialogue regarding concerns and needs with respect to the TEMS system.

Continuing Sustainment actions include:

1. Complete the correlation across the CPIN, engineering data and the TO with
respect to TEMS algorithms.

2. Meet with A-10 SPD regarding concerns related to engine and aircraft data
acquisition and current efforts to update the TEMS system.

3. Participate in TF-34 algorithm review, and be prepared to coordinate and
implement any required changes to TEMS operations that result from this
review.

3.6.3 Tear-down & Quote

Giordano Automation participated in the response to the A-10 SPD request for a tear-
down and quote for a bad actor IEPU.
Issue: The issue is the perception that the IEPU follows suit with the EPU when it comes
to excessive failures for erroneous vibration detection failures. The request to perform a
formal Tear Down Report (TDR) for the TEMS/ADR IEPU last removed from A-10
aircraft 80-0237 at New Orleans is to determine the exact failure mode within this asset.
The SPD feels the source of failure is aircraft related, relatively intermittent, and causing
the IEPU(s) to fail. Current facilities used for the EPU (IATS) have not been fully

31

successful at discovering erroneous vibration problems. This has long plagued the A-10
community.
The investigation with the goal to integrate the Plan of Action with Long term IEPU
Support Planning included the following:

• Investigate the problem and associated previous related problems and activities
related to the resolution of the high vibration anomaly (Code 37 Hits)
• Develop a Plan of Action for resolving the issues associated with the IEPU
• Coordinate a strategy with the TEMS PM and ES
• Coordinate with NGC
• Coordinate with the depot on their efforts associated with EPU refurbishment
• Assist in implementing the Plan of Action

3.6.4 Loop Tester Study of Best Alternative to Hosting of AIS Functions

Giordano Automation has been continuously involved in the engineering analysis of the
software and sustainment issues associated with the TEMS AIS (Loop Tester). This is an
aged tester whose functionality is critical to proper test, configuration and sell-off of
TEMS EPUs. In accomplishing the definition and recommendations of the LOOP tester
task, the following issues are addressed:

• Functions the loop tester performs and how the depot makes use the loop tester
functions. Alternative approaches are feasible for these functions

• What other approaches exist for EPU initialization?
• What are the field and depot issues associated with EPU initialization and data

download such that EPUs are returned to the depot as “unable to download.”
• Functional and TEMS sustainment issues associated with the loop tester
• Costs / benefits of these various approaches and recommended direction.

3.6.5 EPU Download Problem Investigation

Giordano Automation participated in an investigation of the problems that A-10 field
users are having related to EPU download in the field. As part of the study, we have
participated in the definition and characterization of the problem being experienced in the
field, as well as identification of the cause(s) of the problem, and recommend solutions
that would resolve the problem. A field trip to Pope AFB was accomplished to bring
known condition EPUs to the aircraft and participate in the study and resolution of this
chronic condition. The results culminated in the reporting procedure, trip report and a
series of tasks, procedures to be implemented and future recommendations to circumvent
and alleviate this chronic and intermittent problem. A multi-pronged program has been
defined and recommended and the tasks are being planned for FY04 and out-year
implementation.

The upload/download problem often seen in the field is not always an EPU problem. In
addition to known vibration anomalies, and certain contamination issues, it seems to be
generally a process and configuration issue. Many things can keep the software from

32

uploading and down loading correctly, including using CETADS on a unsupported
platform, like windows 2000 or XP. The resulting reports highlight a series of
Sustainment tasks that should be implemented to alleviate this condition.

33

4.0 APPENDIX A - List of Deliverables

A001R Program Progress Report, para 4.7.1

 Delivered monthly in accordance with contract requirements.

A002R CFSR, para 4.7.2

 Delivered monthly in accordance with contract requirements.

A003R S&TR, Final Tech Report, para 4.1.1.3.4, 4.7.3

 Final Technical Report contained herein. (4.7.3)
 Final AGETS Technical Report delivered October 2003 (4.1.1.3.4)

A004R Presentation Material, para 4.7.4

Presentation Material delivered throughout contract and copies included in Monthly
Progress Reports

A005R Revisions to Gov Docs, para 4.1.1.3.3.5, 4.1.2.1, 4.2.5, 4.2.6, 4.7.5

 4.1.1.3.3.5 – Revisions to AGETS Programmer’s Manual delivered by OnBoard Software
 4.1.2.1 – RAM card replacement never successfully flight tested.
 4.2.5 – This task remained unfunded.
 4.2.6 – This task performed by Frontline and deliverables were provided to the AF

4.7.5 – Updates were made to TEMS SRU TPI documents and delivered as part of the
TPS documentation package.

A006R TIR, Tech Info Report (TIR), Analysis, para 4.1.1

 Technical Report: Functional/In-Circuit Test Study, delivered to the Air Force: Dec 01

A007R TIR, Modification Implementation Procedures, para 4.1.2.2

Technical Report: Altering Configurations of the 091600 RAM card delivered to Air
Force October 2000

A008R Presentation Material, 4.1.2.4

 Presentation Material delivered to Air Force and included in Monthly Progress Reports

A009R TIR, Circuit Card ID, para 4.2.4

 This task performed by Frontline and deliverables were provided to the AF

A010R TIR, Adjustment Recommendations, para 4.2.5

 This task remained unfunded.

34

A011R TIR, Test Program Instructions, para 4.2.6

 This task performed by Frontline and deliverables were provided to the AF

A012R TIR, Test/Demonstration Plan, para 4.4

 Technical Report: TPS Fault Insertion Plan delivered to Air Force for each of the
following test program sets:

CPIN PART NUMBER TEMS EPU
Slot Configuration

85E-USQ85/APST-U003-00A 091350-302,304,305,306 A6
85E-USQ85/APST-U001-00A 091450-(301-314) A8
85E-USQ85/APST-U001-00A *091460-(301-306) A8
85E-USQ85/APST-U002-00A 9383755-10 A8
85E-USQ85/M390-U001-01A 090280 UDU Display CCA
85E-USQ85/M390-U002-01A 090285 UDU Switching A
85E-USQ85/M390-U003-01A 090290 UDU Switching B
85E-USQ85/FFSCU/APST-
U001-00A

5996-01-154-8593 FFSCU

A013R TIR, Test/Demonstration Report, para 4.4.1

 Technical Report: Acceptance Test documentation was delivered to the Air Force for
each of the test programs listed in the table above.

A014+ Conference Minutes, para 4.7.4

Numerous conference and meeting minutes and trip reports were prepared and delivered
directly to the Air Force and subsequently included in Monthly Progress Reports.

A015+ TIR, System Design/Trade Study Report, para, 4.1.1.3.2

AGETS Technical Report delivered June 2003 “Sustaining the Life of AGETS through
the Year 2013 and Beyond”

A016+ Performance Specifications Documents, para 4.1.1.3.2.1

 AGETS DAA Performance Specification delivered August 2003

A017+ TIR, Technical Support Comments and Recommendations, para 4.7.4.1

Technical Report: TEMS Sustainment Plan delivered on iterative basis throughout
contract period. (Currently at Revision 6)

A018+ Data Accession List, para 4.7.6

Data Accession List delivered to the Air Force as part of the AGETS Trade Study Final
Report and also in Monthly Status Reports

